About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-16867
SLAC Release Date: March 6, 2017
Extremes of the jet-accretion power relation of blazars, as explored by NuSTAR
Sbarrato, Tullia.
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z>2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z=3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviours. We found that NuSTAR is i... Show Full Abstract
Hard X-ray observations are crucial to study the non-thermal jet emission from high-redshift, powerful blazars. We observed two bright z>2 flat spectrum radio quasars (FSRQs) in hard X-rays to explore the details of their relativistic jets and their possible variability. S5 0014+81 (at z=3.366) and B0222+185 (at z=2.690) have been observed twice by the Nuclear Spectroscopic Telescope Array (NuSTAR) simultaneously with Swift/XRT, showing different variability behaviours. We found that NuSTAR is instrumental to explore the variability of powerful high-redshift blazars, even when no gamma-ray emission is detected. The two sources have proven to have respectively the most luminous accretion disk and the most powerful jet among known blazars. Thanks to these properties, they are located at the extreme end of the jet-accretion disk relation previously found for gamma-ray detected blazars, to which they are consistent. Show Partial Abstract
  • Interest Categories: Astrophysics