About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-17221
SLAC Release Date: January 30, 2018
Numerical evidence of fluctuating stripes in the normal state of high-Tc cuprate superconductors
Huang, Edwin.
Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-Tc superconducting cuprates, stripes are widely suspected to exist in a fluctuating form. Here, we use numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the Cu-O plane. Our results, which are robust to varying... Show Full Abstract
Upon doping, Mott insulators often exhibit symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high-Tc superconducting cuprates, stripes are widely suspected to exist in a fluctuating form. Here, we use numerically exact determinant quantum Monte Carlo calculations to demonstrate dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of the Cu-O plane. Our results, which are robust to varying parameters, cluster size, and boundary condition, strongly support the interpretation of a variety of experimental observations in terms of the physics of fluctuating stripes, including the hourglass magnetic dispersion and the Yamada plot of incommensurability vs. doping. These findings provide a novel perspective on the intertwined orders emerging from the cuprates' normal state. Show Partial Abstract
Download File:
  • Interest Categories: Material Sciences