About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-17279
SLAC Release Date: July 24, 2018
The Spin Structure of the Nucleon
Deur, Alexandre.
We review the present understanding of the spin structure of protons and neutrons, the fundamental building blocks of nuclei collectively known as nucleons. The field of nucleon spin provides a critical window for testing Quantum Chromodynamics (QCD), the gauge theory of the strong interactions since it involves fundamental aspects of hadron structure, and it can be probed in detail in experiments, particularly deep inelastic lepton scattering on polarized targets. QCD was initially probed in hi... Show Full Abstract
We review the present understanding of the spin structure of protons and neutrons, the fundamental building blocks of nuclei collectively known as nucleons. The field of nucleon spin provides a critical window for testing Quantum Chromodynamics (QCD), the gauge theory of the strong interactions since it involves fundamental aspects of hadron structure, and it can be probed in detail in experiments, particularly deep inelastic lepton scattering on polarized targets. QCD was initially probed in high energy deep inelastic lepton scattering with unpolarized beams and targets. With time, interest shifted from testing perturbative QCD to illuminating the nucleon structure itself. In fact, the spin degrees of freedom of hadrons provide an essential and detailed verification of both perturbative and nonperturbative QCD dynamics. Nucleon spin was initially thought of coming mostly from the spin of its quark constituents, based on intuition from the parton model. However, the first experiments showed that this expectation was incorrect. It is now clear that nucleon physics is much more complex, involving quark orbital angular momenta as well as gluonic and sea quark contributions. Thus, the nucleon spin structure remains a most active aspect of QCD research, involving important advances such as the developments of generalized parton distributions (GPD) and transverse momentum distributions (TMD). Elastic and inelastic lepton-proton scattering, as well as photoabsorption experiments provide various ways to investigate non-perturbative QCD. Fundamental sum rules -- such as the Bjorken sum rule for polarized photoabsorption on polarized nucleons -- are also in the non-perturbative domain. This realization triggered a vigorous program to link the low energy effective hadronic description of the strong interactions to fundamental quarks and gluon degrees of freedom of... maggiel Show Partial Abstract
Download File:
  • Interest Categories: HEP Phenomenology