About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-17169
SLAC Release Date: October 30, 2017
DISK - JET CONNECTION IN ACTIVE SUPERMASSIVE BLACK HOLES IN THE STANDARD ACCRETION DISK REGIME
Inoue, Yoshiyuki.
We study the disk-jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS-DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4~GHz and SDSS optical spectrum. Using this radio-loud quasar sample, we investigate the correlation among the jet power ($P_{\rm jet}$), the bolometric disk luminosity ($L_{\rm disk}$), and the black hole mass ($M_{\rm BH}$) in the standard accretion dis... Show Full Abstract
We study the disk-jet connection in supermassive black holes by investigating the properties of their optical and radio emissions utilizing the SDSS-DR7 and the NVSS catalogs. Our sample contains 7017 radio-loud quasars with detection both at 1.4~GHz and SDSS optical spectrum. Using this radio-loud quasar sample, we investigate the correlation among the jet power ($P_{\rm jet}$), the bolometric disk luminosity ($L_{\rm disk}$), and the black hole mass ($M_{\rm BH}$) in the standard accretion disk regime. We find that the jet powers correlate with the bolometric disk luminosities as $\log P_{\rm jet} = (0.96\pm0.012)\log L_{\rm disk} + (0.79 \pm 0.55)$. This suggests that the jet production efficiency of $\eta_{\rm jet}\simeq1.1_{-0.76}^{+2.6}\times10^{-2}$ assuming the disk radiative efficiency of $0.1$ implying low black hole spin parameters and/or low magnetic flux for radio-loud quasars. But it can be also due to dependence of the efficiency on geometrical thickness of the accretion flow which is expected to be small for quasars accreting at the disk Eddington ratios $0.01 \lesssim \lambda \lesssim 0.3$. This low jet production efficiency does not significantly increase even if we set the disk radiative efficiency of 0.3. We also investigate the fundamental plane in our samples among $P_{\rm jet}$, $L_{\rm disk}$, and $M_{\rm BH}$. We could not find a statistically significant fundamental plane for radio-loud quasars in the standard accretion regime. Show Partial Abstract
Download File:
  • Interest Categories: Astrophysics, Gravitation and Cosmology