About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-16676
SLAC Release Date: July 24, 2016
X-Band RF Photoinjector Research And Development at LLNL
In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test station is being developed to investigate accelerator optimization for future upgrades. This test station will enable work to explore the science and techno logy paths required to boost the current mono-energetic gamma-ray (MEGa-Ray) technology a higher effective repetition rate, potentially increasing the average gamma-ray brightness by two orders of magnitude. The test station will consist of a 5.5 cell X-b a... Show Full Abstract
In support of Compton scattering gamma-ray source efforts at LLNL, a multi-bunch test station is being developed to investigate accelerator optimization for future upgrades. This test station will enable work to explore the science and techno logy paths required to boost the current mono-energetic gamma-ray (MEGa-Ray) technology a higher effective repetition rate, potentially increasing the average gamma-ray brightness by two orders of magnitude. The test station will consist of a 5.5 cell X-b and rf photoinjector, single accelerator section, and beam diagnostics. Beam quality must be exceedingly high in order to produce narrow-bandwidth gamma-rays, requiring a robust state of the art photoinjector. The photoinjector will be a high gradient (20 0 MV/m cathode field) standing wave structure, featuring a dual feed racetrack coupler, elliptical irises, and an optimized first cell length. Detailed design of the rf photoinjector for this test station is complete, and will be presented with modeling s imulations, and layout plans. Show Partial Abstract
Download File:
  • Interest Categories: Accelerator Physics