About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-14156
SLAC Release Date: August 26, 2010
Transmission and Radiation of an Accelerating Mode in in a Photonic Bandgap Fiber
Ng, Cho.
A hollow core photonic bandgap (PBG) lattice in a dielectric fiber can provide high gradient acceleration in the optical regime, where the accelerating mode resulting from a defect in the PBG fiber can be excited by high-power lasers. Efficient methods of coupling laser power into the PBG fiber are an area of active research. In this paper, we develop a simulation method using the parallel finite-element electromagnetic suite ACE3P to study the propagation of the accelerating mode in the PBG fib... Show Full Abstract
A hollow core photonic bandgap (PBG) lattice in a dielectric fiber can provide high gradient acceleration in the optical regime, where the accelerating mode resulting from a defect in the PBG fiber can be excited by high-power lasers. Efficient methods of coupling laser power into the PBG fiber are an area of active research. In this paper, we develop a simulation method using the parallel finite-element electromagnetic suite ACE3P to study the propagation of the accelerating mode in the PBG fiber and determine the radiation pattern into free space at the end of the PBG fiber. The far-field radiation will be calculated and the mechanism of coupling power from an experimental laser setup will be discussed. Show Partial Abstract
Download File:
  • Interest Categories: Accelerator Physics