About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-14434
SLAC Release Date: August 19, 2011
The One-Loop Six-Dimensional Hexagon Integral and its Relation to MHV Amplitudes in N=4 SYM
Dixon, Lance.
We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $\tilde\Phi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $\cN=4$ super-Yang-Mills theory, $\Omega^{(1)}$ and $\Omega^{(2)}$. The derivative of $\Omega^{(2)}$ with respect to one of the conformal invariants yields $\tilde\Phi_6$, while another first-order differential ope... Show Full Abstract
We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $\tilde\Phi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $\cN=4$ super-Yang-Mills theory, $\Omega^{(1)}$ and $\Omega^{(2)}$. The derivative of $\Omega^{(2)}$ with respect to one of the conformal invariants yields $\tilde\Phi_6$, while another first-order differential operator applied to $\tilde\Phi_6$ yields $\Omega^{(1)}$. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in $\cN=4$ super-Yang-Mills. Show Partial Abstract
Download File:
  • Interest Categories: HEP Phenomenology, HEP Theory