About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-14501
SLAC Release Date: August 19, 2011
Intrinsic Spin-Orbit Coupling in Superconducting Delta-Doped SrTiO3 Heterostructures
Bell, Christopher.
We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO3 heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film s... Show Full Abstract
We report the violation of the Pauli limit due to intrinsic spin-orbit coupling in SrTiO3 heterostructures. Via selective doping down to a few nanometers, a two-dimensional superconductor is formed, geometrically suppressing orbital pair-breaking. The spin-orbit scattering is exposed by the robust in-plane superconducting upper critical field, exceeding the Pauli limit by a factor of 4. Transport scattering times several orders of magnitude higher than for conventional thin film superconductors enables a new regime to be entered, where spin-orbit coupling effects arise non-perturbatively. Show Partial Abstract
Download File:
  • Interest Categories: General Physics, Other Physics