About SciDoc
Document Search

DOCUMENT METADATA
SLAC Publication: SLAC-PUB-14918
SLAC Release Date: April 3, 2012
Dark Matter Particle Spectroscopy at the LHC: Generalizing M(T2) to Asymmetric Event Topologies
Konar, Partha.
We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem MT2 variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different "children" particles. In this more general approach, the endpoint MT2max of the MT2 distribution now gives the mass Mp(Mc(a),Mc(... Show Full Abstract
We consider SUSY-like missing energy events at hadron colliders and critically examine the common assumption that the missing energy is the result of two identical missing particles. In order to experimentally test this hypothesis, we generalize the subsystem MT2 variable to the case of asymmetric event topologies, where the two SUSY decay chains terminate in different "children" particles. In this more general approach, the endpoint MT2max of the MT2 distribution now gives the mass Mp(Mc(a),Mc(b)) of the parent particle as a function of two input children masses Mc(a) and Mc(b). We propose two methods for an independent determination of the individual children masses Mc(a) and Mc(b). First, in the presence of upstream transverse momentum P(UTM) the corresponding function Mp(Mc(a),Mc(b),P(UTM)) is independent of P(UTM) at precisely the right values of the children masses. Second, the previously discussed MT2 "kink" is now generalized to a "ridge" on the 2-dimensional surface Mp(Mc(a),Mc(b)). As we show in several examples, quite often there is a special point along that ridge which marks the true values of the children masses. Our results allow collider experiments to probe a multi-component dark matter sector directly and without any theoretical prejudice. Show Partial Abstract
Download File:
  • Interest Categories: HEP Phenomenology