About SciDoc
Document Search

DOCUMENT METADATA
SLAC Working Paper: SLAC-WP-126
SLAC Release Date: August 25, 2015
Modeling High-Energy Gamma-Rays from the Fermi Bubbles - Oral Presentation
Splettstoesser, Megan.
In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 50 degrees in galactic latitude and 20-30 degrees in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration is responsible for the high-energy emission of the bubbles. Second order Fermi acceleration requires charged particles and irregular magnetic fiel... Show Full Abstract
In 2010, the Fermi Bubbles were discovered at the galactic center of the Milky Way. These giant gamma-ray structures, extending 50 degrees in galactic latitude and 20-30 degrees in galactic longitude, were not predicted. We wish to develop a model for the gamma-ray emission of the Fermi Bubbles. To do so, we assume that second order Fermi acceleration is responsible for the high-energy emission of the bubbles. Second order Fermi acceleration requires charged particles and irregular magnetic fields-both of which are present in the disk of the Milky Way galaxy. I use the assumption of second order Fermi acceleration in the transport equation, which describes the diffusion of particles. By solving the steady-state case of the transport equation, I compute the proton spectrum due to Fermi second order acceleration and compare this analytical solution to a numerical solution provided by Dr. P. Mertsch. Analytical solutions to the transport equation are taken from Becker, Le, & Dermer and are used to further test the numerical solution. I find that the numerical solution converges to the analytical solution in all cases. Thus, we know the numerical solution accurately calculates the proton spectrum. The gamma-ray spectrum follows the proton spectrum, and will be computed in the future. Show Partial Abstract
Download File:
  • Interest Categories: Other